A Prediction Model for Breast Cancer Recurrence after Adjuvant Hormone Therapy

Author:

Boracchi P.12,Coradini D.32,Antolini L.4,Oriana S.5,Dittadi R.6,Gion M.6,Daidone M.G.3,Biganzoli E.14

Affiliation:

1. Istituto di Statistica Medica e Biometria, Università degli Studi di Milano, Milan

2. Equally contributing Authors

3. Unità Operativa Ricerca Traslazionale, Dipartimento Sperimentale, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan

4. Unità di Statistica Medica e Biometria, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan

5. Centro di Senologia, Casa di Cura Ambrosiana, Cesano Boscone, Milan

6. Centro Regionale Indicatori Biochimici di Tumore, Ospedale Civile, Asl 12, Venice - Italy

Abstract

Hormone therapy with tamoxifen has long been the established adjuvant treatment for node-positive, estrogen–receptor-positive breast cancer in postmenopausal women. Since 30–40% of these patients fail to respond, reliable outcome prediction is necessary for successful treatment allocation. Using pathobiological variables (available in most clinical records: tumor size, nodal involvement, estrogen and progesterone receptor content) from 596 patients recruited at a comprehensive cancer center, we developed a prediction model which we validated in an independent cohort of 175 patients recruited at a general hospital. Calculated at 3 and 4 years of follow-up, the discrimination indices were 0.716 [confidence limits (CL) 0.641, 0.752] and 0.714 (CL 0.650, 0.750) for the training data, and 0.726 (CL 0.591, 0.769) and 0.677 (CL 0.580, 0.745) for the testing data. Waiting for more effective approaches from genomic and proteomic studies, a model based on consolidated pathobiological variables routinely assessed at relatively low costs may be considered as the reference for assessing the gain of new markers over traditional ones, thus substantially improving the conventional use of prognostic criteria.

Publisher

SAGE Publications

Subject

Cancer Research,Clinical Biochemistry,Oncology,Pathology and Forensic Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3