Synthesis and characterization of fluorescein-grafted polyurethane for potential application in biomedical tracing

Author:

Yang Boyuan1,Zou Qin1,Lin Lili1,Li Limei1,Zuo Yi1,Li Yubao1

Affiliation:

1. Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, China

Abstract

Redesigned multifunctional biopolymers represent a novel building bridge for interdisciplinary collaborations in biomaterials development. We prepared fluorescein-grafted polyurethane scaffolds (PU-C1, PU-C5, and PU-B1) to meet both clinical needs and biological safety evaluations, using different contents of calcein and different synthesis procedures for potential biomedical tracing. X-ray diffraction, infrared, X-ray photoelectron spectroscopy, nuclear magnetic resonance, scanning electron microscopy, and light microscopy were used to analyze the composition and structure of polyurethanes, as well as to observe their morphology with and without biomarkers. Fluorescence spectrophotometer and fluorescence microscopy were used to detect the fluorescence characteristics. The results showed that the grafting of calcein significantly affected the chemical structure and fluorescence sensitivities of copolymers. When compared to calcein, which was added before synthesis (PU-C1), the marker that was added during the extender process (PU-B1) presented higher fluorescence efficiency. Both PU-C5 and PU-B1 exhibited strong fluorescent response and good cytocompatibility in vitro and in vivo, with no interference from the autofluorescence of tissues after 4 weeks of implantation. The fluorescence-marked material can be used to continuously and noninvasively monitor the dynamic changes in polymers, which provides a way to clearly trace the material or to distinguish between the material and tissue in vivo.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3