Abstract
Plastic surgeons have long searched for the ideal materials to use in craniomaxillofacial reconstruction. The aim of this study was to obtain a novel porous elastomer based on designed aliphatic polyurethane (PU) and nanosized hydroxyapatite (n-HA) fillers for plastic reconstruction. The physicochemical properties of the prepared composite elastomer were characterized by infrared spectroscopy (IR), X-ray diffraction (XRD), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX), transmission electron microscopy (TEM), thermal analysis, mechanical tests, and X-ray photoelectron spectroscopy (XPS). The results assessed by the dynamic mechanical analysis (DMA) demonstrated that the n-HA/PU compounded foams had a good elasticity, flexibility, and supporting strength. The homogenous dispersion of the n-HA fillers could be observed throughout the cross-linked PU matrix. The porous elastomer also showed a uniform pore structure and a resilience to hold against general press and tensile stress. In addition, the elastomeric foams showed no evidence of cytotoxicity and exhibited the ability to enhance cell proliferation and attachment when evaluated using rat-bone-marrow-derived mesenchymal stem cells (BMSCs). The animal experiments indicated that the porous elastomers could form a good integration with bone tissue. The presence of n-HA fillers promoted cell infiltration and tissue regeneration. The elastomeric and bioactive n-HA/PU composite foam could be a good candidate for future plastic reconstruction.
Subject
General Materials Science,General Chemical Engineering
Reference40 articles.
1. Cross-specialty developments: a summary of the mutually relevant recent literature from the journal of plastic, reconstructive and aesthetic surgery
2. Cosmetic Facial Fillers and Severe Vision Loss
3. History of synthetic materials in alloplastic cranioplasty
4. Recent trend in the choice of fillers and injection techniques in Asia: A questionnaire study based on expert opinion;Lee;J. Drugs Dermatol. JDD,2014
5. Application of Expanded Polytetrafluoroethylene(e-PTFE) in the Field of Plastic Surgery and Cosmetic Domestic;Ye;Chem. Prod. Technol.,2016
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献