Affiliation:
1. Chengdu Institute of Organic Chemistry CAS, Chengdu, China
Abstract
Ureteral stents have been widely used as biomedical devices to treat some urological diseases for several decades. However, the encrustation complications hamper the long-time clinical use of the ureteral stents. In this work, a new type of biodegradable material for the ureteral stents, methoxypoly(ethylene glycol)-block-poly(L-lactide-ran-Ɛ-caprolactone) (mPEG-PLACL), is evaluated to overcome this problem. The results show that the hydrophilicity and degradation rate in artificial urine of mPEG-PLACL are both significantly increased. It is worth noting that the mPEG-PLACL shows a lower amount of encrustation after immersing the stents in the dynamic urinary extracorporeal circulation (DUEC) model for 7 days. In addition, 71% Ca and 92% Mg are inhibited in vivo by quantitative analysis. Pathological analysis exhibit that the mPEG-PLACL cause less diffuse mucosal hyperplasia after 7 weeks of implantation. All the results indicate that this new type of biodegradable material had an excellent potential for the ureteral stents in the future.
Funder
Department of Science and Technology of Sichuan Province
West Light Foundation of the Chinese Academy of Sciences
Subject
Biomedical Engineering,Biomaterials
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献