A new hydrophilic biodegradable ureteral stent restrain encrustation both in vitro and in vivo

Author:

Zhang Yu1ORCID,He Jian1,Chen Hechun1,Xiong Chengdong1

Affiliation:

1. Chengdu Institute of Organic Chemistry CAS, Chengdu, China

Abstract

Ureteral stents have been widely used as biomedical devices to treat some urological diseases for several decades. However, the encrustation complications hamper the long-time clinical use of the ureteral stents. In this work, a new type of biodegradable material for the ureteral stents, methoxypoly(ethylene glycol)-block-poly(L-lactide-ran-Ɛ-caprolactone) (mPEG-PLACL), is evaluated to overcome this problem. The results show that the hydrophilicity and degradation rate in artificial urine of mPEG-PLACL are both significantly increased. It is worth noting that the mPEG-PLACL shows a lower amount of encrustation after immersing the stents in the dynamic urinary extracorporeal circulation (DUEC) model for 7 days. In addition, 71% Ca and 92% Mg are inhibited in vivo by quantitative analysis. Pathological analysis exhibit that the mPEG-PLACL cause less diffuse mucosal hyperplasia after 7 weeks of implantation. All the results indicate that this new type of biodegradable material had an excellent potential for the ureteral stents in the future.

Funder

Department of Science and Technology of Sichuan Province

West Light Foundation of the Chinese Academy of Sciences

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3