Degradation behavior of polylactic‐co‐glycolic acid and polycaprolactone with nanosilver scaffolds

Author:

Dou Dandan1,Zhang Yang1,Zhou Jin1,Li Linhao1,Wang Lizhen1ORCID

Affiliation:

1. Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering Beihang University Beijing China

Abstract

AbstractUreteral stents are commonly used in clinical treatment of ureteral diseases. There were a series of complications, such as biofilms and crusts caused by bacteria after surgery. Therefore, biodegradable with bacteriostatic ureteral scaffolds would be the potential to solve above mentioned problems. In this study, nanosilver (AgNP) was added to the polylactic‐co‐glycolic acid (PLGA) and polycaprolactone (PCL) to prepare biodegradable antibacterial ureteral scaffold samples by 3D printing. The biocompatibility, antibacterial properties, degradability, and mechanical properties of samples were observed. The samples were under a strong inhibitory effect on both Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), and the higher the concentration of AgNP, the stronger the antibacterial effect. When the concentration of AgNP was 10%, the antibacterial effect was up to 100%. AgNP was released continually with the degradation of samples, which can achieve a continuous antibacterial effect. The breaking strength of the samples without and with AgNP were 6.08 ± 1.16 MPa and 26.02 ± 2.00 MPa. The mechanical properties of samples with AgNP were higher than those without AgNP. It provides a potential way to design ureteral scaffolds based on biodegradable polymers with AgNP in the clinic.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Foundation of Beijing Municipality

Higher Education Discipline Innovation Project

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3