In vivo and in vitro assessment of the biocompatibility and degradation of high-purity Mg anastomotic staples

Author:

Qu Su1,Xia Jiazeng2,Yan Jun3,Wu Hongliu4,Wang Hao2,Yi Yi2,Zhang Xiaonong4,Zhang Shaoxiang5,Zhao ChangLi4,Chen Yigang2

Affiliation:

1. Department of Gastroenterology, Wuxi Second Hospital, Nanjing Medical University, Jiangsu, PR China

2. Department of General Surgery, Wuxi Second Hospital, Nanjing Medical University, Jiangsu, PR China

3. Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, PR China

4. State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, PR China

5. Suzhou Origin Medical Technology Co. Ltd., 2 Haicheng Road, Changshu Economic and Technology Development Zone, Jiangsu, PR China

Abstract

Titanium (Ti) staples are not biodegradable, and anastomotic complications related to Ti staples are reported frequently. In the present study, the biocompatibility and degradation behavior of high-purity magnesium (HP Mg) staples with the small intestine were investigated. HP Mg staples did not affect the relative growth rate, cell cycle and apoptosis of primary rectal mucosal epithelial cells (IEC-6) in vitro. At one, two and three days after immersion in intestinal juice, the weight of the 30 rinsed HP Mg staples reduced by 7.5 ± 1.6, 10.6 ± 2.2 and 13.5 ± 2.1 mg, respectively, and those in the Hanks’ solution reduced by 3.9 ± 0.8, 6.1 ± 1.2 and 7.1 ± 2.4 mg. Extracts of HP Mg staples were bio-safe for IEC-6, and the corrosion rate of HP staples was faster in the small intestinal juice than in the Hanks’ solution. In the in vivo experiments, the small intestine of the minipigs was anastomosed by HP Mg and Ti staples. HP Mg staples neither affected important bio-chemical parameters nor induced serious inflammation or necrosis in the anastomosis tissues. The residual weight of a HP Mg staples (0.81 ± 0.13 mg) was 89.7% of the original weight (9 ± 0.09 mg) one month after surgery. The in vivo corrosion rate for one HP Mg staple was determined to be∼0.007 ± 0.001 mm·month−1. The preliminary results of the biocompatibility and degradation of high-purity Mg anastomotic staples are promising, and further studies will be initiated to study in more detail.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3