Swelling of kappa carrageenan hydrogels in simulated body fluid for hypothetical vessel occlusion applications

Author:

Wurm Florian1ORCID,Lerchster Norbert2,Pinggera Germar-Michael3,Pham Tung1,Bechtold Thomas1ORCID

Affiliation:

1. Research Institute for Textile Chemistry and Textile Physics, Faculty of Chemistry and Pharmacy, University of Innsbruck, Dornbirn, Austria

2. Institute for Environment and Food Safety, Bregenz, Austria

3. Department of Urology, Medical University of Innsbruck, Innsbruck, Austria

Abstract

The swelling ability of kappa-carrageenan (KC) hydrogels was investigated in simulated body fluid (SBF). The SBF mimics the ionic concentrations in the vasa deferentia of human males. The study clarifies if these hydrogels can be adjusted to occlude the vasa deferentia by swelling. For this purpose, swelling to twice the initial volume is desirable. In this study, hydrogels of different primary potassium concentrations, biopolymer concentrations and ethanol-exchanged gels, were immersed in SBF either directly or after drying (pre-dried). We measured the absolute and relative swelling degree, and the swelling rates of the gels. Extensive pre-drying leads to irreversible gel densification and absolute swelling magnitudes decrease. We found that immersion into the SBF also leads to potassium ion accumulation, and network restructuring in the hydrogels. This markedly increases the storage moduli of the gel networks. The ion content in the gel structures also directly affects the swelling speed, the fastest swelling occurred in ethanol-exchanged and pre-dried gels. We found that by pre-drying and potassium content adjustment, swelling of the hydrogels is sufficient to render KC hydrogels as a possible candidate for the occlusion of the vasa deferentia.

Funder

Amt der Vorarlberger Landesregierung

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3