Composite poly(l-lactic-acid)/silk fibroin scaffold prepared by electrospinning promotes chondrogenesis for cartilage tissue engineering

Author:

Li Zhengqiang12,Liu Peng3,Yang Ting4,Sun Ying12,You Qi12,Li Jiale12,Wang Zilin12,Han Bing12

Affiliation:

1. Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Jilin University, Changchun, China

2. Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China

3. Department of Stomatology, School of Medicine, Yanbian University, Yanji, China

4. College of Chemistry, Jilin University, Changchun, China

Abstract

Nanofibrous materials produced by electrospinning have attracted considerable attention from researchers in regenerative medicine. A combination of nanofibrous scaffold and chondrocytes is considered promising for repair of cartilage defect or damage. In the present study, we fabricated a poly(l-lactic-acid) (PLLA)/silk fibroin (SF) nanofibrous scaffold by electrospinning and evaluated its chondrogenic potential. The PLLA/SF nanofibers were characterized for diameter, surface wettability, swelling ratio, and tensile strength. Through in vitro experiments, PLLA/SF scaffold–chondrocyte interactions were investigated relative to the unmodified PLLA scaffold with regard to cellular adhesion, spreading, and proliferation by scanning electron microscopy and confocal laser scanning microscopy, and through analyses of DNA, sulfated glycosaminoglycan, and collagen. In addition, hematoxylin-eosin and Alcian blue-nuclear fast red staining were used to observe growth of chondrocytes, and secretion and distribution of cartilage-specific extracellular matrices in the scaffolds. Expressions of cartilage-related genes (collagen II, aggrecan, sox9, collagen I, and collagen X) were detected by real-time quantitative PCR. The PLLA/SF scaffold had better hydrophilicity, and could support chondrocytes adhesion and spreading more effectively than the unmodified PLLA scaffold. Chondrocytes secreted more cartilage-specific extracellular matrices and maintained their phenotype on the PLLA/SF scaffold. So it is concluded that the PLLA/SF scaffold is more conducive to in vitro formation of cartilage-like new tissues than the unmodified PLLA scaffold, and may be a promising material in cartilage tissue engineering.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3