Investigation of Protein Adsorption Mechanism and Biotribological Properties at Simulated Stem-Cement Interface

Author:

Zhang Hongyu1,Zhang Shaohua,Luo Jianbin,Liu Yuhong,Qian Shanhua2,Liang Fanghui,Huang Yongling3

Affiliation:

1. e-mail:

2. State Key Laboratory of Tribology, Department of Precision Instruments and Mechanology, Tsinghua University, Beijing, 100084, China

3. Jinghang Biomedicine Engineering Division, Beijing Institute of Aeronautical Material, Beijing, 100095, China

Abstract

Debonding of the stem–cement interface occurs inevitably for almost all stem designs under physiological loading, and the wear debris generated at this interface is showing an increasing significance in contributing to the mechanical failure of cemented total hip replacements. However, the influence of protein adsorption onto the femoral stem and the bone cement surfaces has not been well taken into consideration across previous in vitro wear simulations. In the present study, the protein adsorption mechanism and biotribological properties at the stem-cement interface were investigated through a series of frictional tests using bone cements and femoral stems with two kinds of surface finishes, lubricated by calf serum at body temperature. The friction coefficient was dependent on the surface finish of the samples, with an initial much lower value obtained for the polished contacting pairs followed by a sudden increase in the friction coefficient with regard to the tests performed at higher frequencies. The friction coefficient did not change much during the tests for the glass-bead blasted contacting pairs. In addition, proteins from the calf serum were found to adsorb onto both the femoral stem and the bone cement surfaces, and the thickness of the physically adsorbed proteins on the polished metallic samples was more than 10 μm, which was measured using an optical interferometer and validated through a vertical scanning methodology based on Raman spectroscopy. An initial protein adsorption mechanism and biotribological properties at the stem-cement interface were examined in this study, and it suggested that wear at the stem-cement interface may be postponed or reduced by tailoring physicochemical properties of the femoral components to promote protein adsorption.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3