The adhesion and proliferation of bone marrow-derived mesenchymal stem cells promoted by nanoparticle surface

Author:

Chen Lian1,Sun Junying1,Zhu Zhansheng2,Wu Kaiyun3,Li Wenjie3,Liu Hongming1,Xu Shi4

Affiliation:

1. Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, People's Republic of China

2. Department of Forensic Medicine, Medical College of Soochow University, 199 Renai Street, Suzhou, Jiangsu 215123, People's Republic of China

3. Department of Anatomy, Medical College of Soochow University, 199 Renai Street, Suzhou, Jiangsu 215123, People's Republic of China

4. Department of Surgery, Suzhou Gaoxin District Hospital, 95 Huashan Street, Suzhou, Jiangsu 215011, People's Republic of China

Abstract

This study's aim consists of evaluating the adhesion and proliferation of mesenchymal stem cells (MSCs) derived from rat bone marrow on nanoparticle Titanium (Ti) surface. Hence, passage 3 MSCs were, respectively, seeded on nanoparticle Ti and pure Ti surfaces and then cultured for 32 h. Cell morphology and viability were separately examined by scanning electron microscopy and 3-(4,5-dimethylthiazsol-2-yl)-2,5-diphenyltetrazolium bromide assay. Moreover, the mitotic rate of the attached MSCs was observed through immunocytochemistry. The real-time polymerase chain reaction was applied to determine the adhesion-associated messenger ribonucleic acid (mRNA), CD44 gene encoding variant isoform 6 (CD44 V6), and the integrinβ1 level. The results showed that MSCs performed better in faster extension on the nanoparticle Ti surface than on the pure Ti surface after culturing for 4 h, and were quicker in fusion patterns after 16 h. Furthermore, cell viability was significantly increased on the nanoparticle Ti surface compared to that of the pure Ti surface 16 h after initial seeding ( p < 0.05), and the mitotic rate of attached MSCs on the nanoparticle Ti surface was higher than that on the pure Ti surface after 32 h ( p < 0.05). More interestingly, the CD44 V6 and integrinβ1 mRNA in the nanoparticle Ti surface group expressed higher than that in the pure Ti surface group after 4 h ( p < 0.05), and positive correlation between CD44 V6 and integrinβ1 was found through statistical analysis (correlation coefficient rs = 0.98, p < 0.05). Our study's result indicates that a nanoparticle Ti surface can significantly promote the adhesion and proliferation of MSCs, and also improve the bioactivity of Ti surface.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3