Facile Method for Obtaining Gold-Coated Polyester Surfaces with Antimicrobial Properties

Author:

Drobota M.1ORCID,Butnaru M.12ORCID,Vornicu N.3ORCID,Plopa O.4ORCID,Aflori M.1ORCID

Affiliation:

1. “Petru Poni” Institute of Macromolecular Chemistry, 41A, Grigore Ghica Voda Alley, Iasi 700487, Romania

2. Department of Biomedical Sciences “Grigore T. Popa” University of Medicine and Pharmacy, 9-13, Kogalniceanu Street, Iasi 700115, Romania

3. Metropolitan Center of Research T.A.B.O.R, The Metropolitanate of Moldavia and Bukovina, Closca 9 Street, Iasi 700066, Romania

4. SC Intelectro Iasi SRL, Iancu Bacalu no. 3 Street, Iasi 700029, Romania

Abstract

The antimicrobial and antifungal activity of polymers used in medical devices has been extensively studied due to the growing impact of hospital-related infections in patients. The ideal biocidal polymeric materials should be very effective in the microorganism’s inhibition, not toxic to the human body, and environmentally friendly. In this context, this work is aimed at obtaining antimicrobial and antifungal properties at the polyester film surfaces without introducing toxic effects. Poly (ethylene terephthalate) (PET) films were functionalized with Ar plasma and then immersed in a solution containing gold nanoparticles (AuNps). The results demonstrated the appearance of the hydrophilic groups on the film surface after modification of PET film by plasma Ar treatment and the formation of the polar groups such as C=O, COO-, and OH, which then reacted with AuNps. The changes induced in the treated polymer samples were investigated in terms of AuNp adsorption efficiency on polyester film by contact angle, profilometry, Scanning Electron Microscopy (SEM), Attenuated Total Reflectance Spectroscopy-Fourier Transform Infrared (ATR-FTIR), and X-ray Photoelectron Spectroscopy (XPS) measurements. The morphological and structural analyses have shown a good adhesion of AuNps at treated film surfaces. The results of biocompatibility antimicrobial and antifungal tests proved the nontoxic behavior of the sample and its good antimicrobial and antifungal activity.

Funder

Research, Technological Development and Innovation

Publisher

Hindawi Limited

Subject

Polymers and Plastics,Organic Chemistry,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3