Molecular Emissions from Stretched Excitation Pulse in Nanosecond Phase-Selective Laser-Induced Breakdown Spectroscopy of TiO2 Nanoaerosols

Author:

Xiong Gang1,Zhang Yuqian1,Schulz Christof2,Tse Stephen D.1ORCID

Affiliation:

1. Department of Mechanical and Aerospace Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA

2. IVG, Institute for Combustion and Gas Dynamics – Reactive Fluids and CENIDE, Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, Duisburg, Germany

Abstract

In phase-selective laser-induced breakdown spectroscopy (PS-LIBS), gas-borne nanoparticles are irradiated with laser pulses (∼2.4 GW/cm2) resulting in breakdown of the nanoparticle phase but not the surrounding gas phase. In this work, the effect of excitation laser-pulse duration and energy on the intensity and duration of TiO2–nanoparticle PS-LIBS emission signal is investigated. Laser pulses from a frequency-doubled neodymium-doped yttrium aluminum garnet (Nd:YAG) laser (532 nm) are stretched from 8 ns (full width at half maximum, FWHM) up to ∼30 ns at fixed pulse energy using combinations of two optical cavities. The intensity of the titanium atomic emissions at around 500 nm wavelength increases by ∼60%, with the stretched pulse and emissions at around 482 nm, attributed to TiO, enhanced over 10 times. While the atomic emissions rise with the stretched laser pulse and decay around 20 ns after the end of the laser pulse, the TiO emissions reach their peak intensity at about 20 ns later and last longer. At low laser energy (i.e., 1 mJ/pulse, or 80 MW/cm2), the TiO emissions dominate, but their increase with laser energy is lower compared to the atomic emissions. The origin of the 482 nm emission is explored by examining several different aerosol setups, including Ti–O, Ti–N, and Ti–O–N from a spark particle generator and Ti–O–N–C–H aerosol from flame synthesis. The 482 nm emissions are attributed to electronically excited TiO, likely resulting from the reaction of excited titanium atoms with surrounding oxidizing (carbonaceous and/or radical) species. The effects of pulse length are attributed to the shift of absorption from the initial interaction with the particle to the prolonged interaction with the plasma through inverse bremsstrahlung.

Funder

Deutsche Forschungsgemeinschaft

Army Research Office

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3