Abstract
AbstractLaser-induced incandescence (LII) is a widely used combustion diagnostic for in situ measurements of soot primary particle sizes and volume fractions in flames, exhaust gases, and the atmosphere. Increasingly, however, it is applied to characterize engineered nanomaterials, driven by the increasing industrial relevance of these materials and the fundamental scientific insights that may be obtained from these measurements. This review describes the state of the art as well as open research challenges and new opportunities that arise from LII measurements on non-soot nanoparticles. An overview of the basic LII model, along with statistical techniques for inferring quantities-of-interest and associated uncertainties is provided, with a review of the application of LII to various classes of materials, including elemental particles, oxide and nitride materials, and non-soot carbonaceous materials, and core–shell particles. The paper concludes with a discussion of combined and complementary diagnostics, and an outlook of future research.
Funder
Deutsche Forschungsgemeinschaft
Natural Sciences and Engineering Research Council of Canada
Universität Duisburg-Essen
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,Physics and Astronomy (miscellaneous),General Engineering
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献