Mid-Infrared Variable Selection for Soil Organic Matter Fractions Based on Soil Model Systems and Permutation Importance Algorithm

Author:

Jović Branislav1ORCID,Panić Marko2,Pavlović Aleksandra2,Kordić Branko1,Ćirić Vladimir3

Affiliation:

1. University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Novi Sad, Serbia

2. Research Centre for Sensing Technologies, Institute Biosens, NoviSad, Serbia

3. University of Novi Sad, Faculty of Agriculture, Novi Sad, Serbia

Abstract

In this research, an attempt was made to classify soil samples according to the different fractions of soil organic matter (SOM) using model systems in which the ratio of the fractions of SOM is chemically mimicked. A mixture of starch and nicotinamide was used for the labile organic matter model, while a standard of humic acid was used for the stabile organic matter. Changing the threshold value in the selected ranges after a permutation importance algorithm is conducted using train models and test data set, a list of selected important wavelengths and their importance scores were obtained. Three regions for the classification of soil fractions within the estimated probability density function are most prominent: 800–1200 cm–1, 0.48–0.55; 1800–2000 cm–1, 0.52–0.62; and 2500–3200 cm–1, 0.48–0.62, where the first component represents the spectral range while the second component covers the range of the importance score. Obtained wavelength ranges indicate the importance of the aliphatic stretching and bending vibration region, as well as the total soil reflectance (mineral content) for the characterization of organic matter fractions. A comparative evaluation with literature data found that the obtained wavelengths have a potential for application in methods of proximal and remote detection/calibration of existing and development of new sensors for Advanced Spaceborne Thermal Emission and Reflection Radiometer satellites, specifically in the shortwave infrared and thermal infrared ranges.

Funder

Europeran Commision European Union’s Horizon 2020 research and innovation programme

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3