Determination of Organic and Inorganic Carbon in Forest Soil Samples by Mid-Infrared Spectroscopy and Partial Least Squares Regression

Author:

Tatzber Michael1,Mutsch Franz1,Mentler Axel1,Leitgeb Ernst1,Englisch Michael1,Gerzabek Martin H.1

Affiliation:

1. Institute of Soil Research, Department of Forest and Soil Sciences, University of Natural Resources and Applied Life Sciences, Peter Jordan Strasse 82, 1190 Vienna, Austria (M.T., A.M., M.H.G.); and Federal Research and Training Centre for Forests, Natural Hazards and Landscape, Seckendorff-Gudent-Weg 8, 1131 Vienna, Austria (F.M., E.L., M.E.)

Abstract

Analyses of organic and inorganic carbon are of great interest in the field of soil analyses. Soil samples from a national monitoring project were provided for this study, including more than 130 forest sites from Austria. We investigated the humus layers (if present undecomposed litter (L), of mixed samples of F- (intermediate decomposed organic matter) and H-(highly decomposed organic matter) (FH)) and upper mineral soil layers (0–5 and 5–10 cm) of the samples. Mid-infrared spectra were recorded and evaluated by their band areas; subsequently we calculated models with the partial least squares approach. This was done by correlating calculated data of the mid-infrared spectra with gas-volumetrically determined carbonate values and measurements of organic carbon from an elemental analyzer. For carbonate determination, this approach gave satisfying results. For measurements of organic carbon, it was necessary to discriminate into humus layers and mineral soils or even more groups to obtain satisfactory correlations between spectroscopically determined and conventionally measured values. These additional factors were the presence of carbonate, the forest type, and the dominant tree species. In mineral soils, fewer subdivisions were necessary to obtain useful results. In humus layers, groupings of sites with more similar characteristics had to be formed in order to obtain satisfying results. The conclusion is that the chemical background of soil organic matter leading to different proportions of functional groups, especially in the less humified organic matter of the humus layers, plays a key role in analyses with mid-infrared spectroscopy. Keeping this in mind, the present approach has a significant potential for the prediction of properties of forest soil layers, such as, e.g., carbonate and organic carbon contents.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3