Plasma Parameters During Nanoparticle-Enhanced Laser-Induced Breakdown Spectroscopy (NELIBS) in the Presence of Nanoparticle–Protein Conjugates

Author:

Dell’Aglio Marcella12ORCID,Mallardi Antonia23,Gaudiuso Rosalba24,Giacomo Alessandro De124

Affiliation:

1. CNR-IFN, Institute for Photonics and Nanotechnologies, C/o University of Bari, Physics Department, Bari, Italy

2. CSGI (Center for Colloid and Surface Science), Bari, Italy

3. CNR-IPCF, Institute for Physical and Chemical Processes, C/o University of Bari, Chemistry Department, Bari, Italy

4. Department of Chemistry, University of Bari, Bari, Italy

Abstract

Nanoparticle-enhanced laser-induced breakdown spectroscopy (NELIBS) is an optical emission technique based on the laser-induced plasma (LIP) on a sample after the deposition of plasmonic nanoparticles (NPs) on its surface. The employment of the NPs allows an enhancement of the signal with respect to the one obtained with the conventional laser-induced breakdown spectroscopy (LIBS) enabling an extremely high sensitivity and very low limits of detection compared with the LIBS performance. Recently, NELIBS was used for monitoring the NP protein corona formation. As a matter of fact, the NPs in the presence of proteins adsorbed on the surface change their surface properties, therefore the sensing of protein corona formation was possible because of the strong dependence of NELIBS effects on the NP organization on the substrate, which in turn is deeply affected by the surface properties of the NPs. A correlation was found between NELIBS enhancement and the structure of the NP–protein conjugate in terms of protein content absorbed on the NP surface. An interesting question that was not yet exploited regards the role of LIP during the NELIBS when the NPs are covered with proteins. Since the presence of organic matter can strongly quench the LIP emission, the study of the LIP properties during protein corona sensing by NELIBS is of interest for two main reasons: (i) to understand whether the plasma parameters can vary in the presence of proteins adsorbed on the NP surface and (ii) to investigate how and if the plasma parameters themselves can influence the NELIBS processes. With this aim, the study of plasma parameters, i.e., electron densities and temperatures, during the sensing of NP protein corona by NELIBS is presented and discussed. The NPs used during these experiments were ultrapure gold NPs (AuNPs) produced by pulsed laser ablation in liquid, which are stable without any stabilizer. The human serum albumin protein is used to form AuNP–protein conjugates further deposited on a titanium target in NELIBS measurements. Dynamic light scattering, surface plasmon resonance spectroscopy, and laser Doppler electrophoresis for ζ-potential determination were employed to monitor the protein coverage of NP surface in the conjugate solutions before the NELIBS measurements.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3