Integrating Laser-Induced Breakdown Spectroscopy and Ensemble Learning as Minimally Invasive Optical Screening for Diabetes

Author:

Rehan Imran12ORCID,Khan Saranjam1,Ullah Rahat2ORCID

Affiliation:

1. Department of Physics, Islamia College University Peshawar, Khyber Pakhtunkhwa, Pakistan

2. National Institute of Lasers and Optronics College, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, Pakistan

Abstract

Diabetes mellitus is a prevalent chronic disease necessitating timely identification for effective management. This paper introduces a reliable, straightforward, and efficient method for the minimally invasive identification of diabetes mellitus through nanosecond pulsed laser-induced breakdown spectroscopy (LIBS) by integrating a state-of-the-art machine learning approach. LIBS spectra were collected from urine samples of diabetic and healthy individuals. Principal component analysis and an ensemble learning classification model were used to identify significant changes in LIBS peak intensity between the diseased and normal urine samples. The model, integrating six distinct classifiers and cross-validation techniques, exhibited high accuracy (96.5%) in predicting diabetes mellitus. Our findings emphasize the potential of LIBS for diabetes mellitus identification in urine samples. This technique may hold potential for future applications in diagnosing other health conditions.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3