Bulk Protein and Oil Prediction in Soybeans Using Transmission Raman Spectroscopy: A Comparison of Approaches to Optimize Accuracy

Author:

Singh Rajveer12,Wrobel Tomasz P.13,Mukherjee Prabuddha1,Gryka Mark12,Kole Matthew12,Harrison Sandra4,Bhargava Rohit1256ORCID

Affiliation:

1. Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA

2. Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA

3. Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland

4. Illinois Crop Improvement Association, Champaign, IL, USA

5. Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, USA

6. Department of Electrical & Computer Engineering, Mechanical Science and Engineering, Chemical and Biomolecular Engineering, and Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA

Abstract

Rapid measurements of protein and oil content are important for a variety of uses, from sorting of soybeans at the point of harvest to feedback during soybean meal production. In this study, our goal is to develop a simple protocol to permit rapid and robust quantitative prediction of soybean constituents using transmission Raman spectroscopy (TRS). To develop this approach, we systematically varied the various elements of the measurement process to provide a diverse test bed. First, we utilized an in-house-built benchtop TRS instrument such that suitable optical configurations could be rapidly deployed and analyzed for experimental data collection for individual soybean grains. Second, we also utilized three different soybean varieties with relatively low (33.97%), medium (36.98%), and high protein (41.23%) contents to test the development process. Third, samples from each variety were prepared using whole bean and three different sample treatments (i.e., ground bean, whole meal, and ground meal). In each case, we modeled the data obtained using partial least squares (PLS) regression and assessed spectral metric-based multiple linear regression (metric-MLR) approaches to build robust prediction models. The metric-MLR models showed lower root mean square errors (RMSEPs), and hence better prediction, compared to corresponding classical PLS regression models for both bulk protein and oil for all treatment types. Comparing different sample preparation approaches, a lower RMSEPs was observed for whole meal treatment and thus the metric-MLR modeling with ground meal treatment was considered to be optimal protocol for bulk protein and oil prediction in soybean, with RMSEP values of 1.15 ± 0.04 (R2 = 0.87) and 0.80 ± 0.02 (R2 = 0.87) for bulk protein and oil, respectively. These predictions were nearly two- to threefold better (i.e., lower RMSEPs) than the corresponding NIR spectroscopy measurements (i.e., secondary gold standards in grain industry). For content prediction in whole soybean, incorporating physical attributes of individual grains in metric-MLR approach show up to 22% improvement in bulk protein and a relatively mild (up to ∼5%) improvement in bulk oil prediction. The unique combination of metric-MLR modeling approach (which is rare in the field of grain analysis) and sample treatments resulted in improved prediction models; using the physical attributes of individual grains is suggested as a novel measure for improving accuracy in prediction.

Funder

United Soybean Board

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3