Prediction of Lignin Content in Different Parts of Sugarcane Using Near-Infrared Spectroscopy (NIR), Ordered Predictors Selection (OPS), and Partial Least Squares (PLS)

Author:

Assis Camila1,Ramos Rachel S.2,Silva Lidiane A.2,Kist Volmir2,Barbosa Márcio H.P.2,Teófilo Reinaldo F.1

Affiliation:

1. Department of Chemistry, Universidade Federal de Viçosa. 36570-900, Viçosa, Minas Gerais, Brazil

2. Department of Plant Science, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil

Abstract

The building of multivariate calibration models using near-infrared spectroscopy (NIR) and partial least squares (PLS) to estimate the lignin content in different parts of sugarcane genotypes is presented. Laboratory analyses were performed to determine the lignin content using the Klason method. The independent variables were obtained from different materials: dry bagasse, bagasse-with-juice, leaf, and stalk. The NIR spectra in the range of 10 000–4000 cm−1 were obtained directly for each material. The models were built using PLS regression, and different algorithms for variable selection were tested and compared: iPLS, biPLS, genetic algorithm (GA), and the ordered predictors selection method (OPS). The best models were obtained by feature selection with the OPS algorithm. The values of the root mean square error prediction (RMSEP), correlation of prediction ( RP), and ratio of performance to deviation (RPD) were, respectively, for dry bagasse equal to 0.85, 0.97, and 2.87; for bagasse-with-juice equal to 0.65, 0.94, and 2.77; for leaf equal to 0.58, 0.96, and 2.56; for the middle stalk equal to 0.61, 0.95, and 3.24; and for the top stalk equal to 0.58, 0.96, and 2.34. The OPS algorithm selected fewer variables, with greater predictive capacity. All the models are reliable, with high accuracy for predicting lignin in sugarcane, and significantly reduce the time to perform the analysis, the cost and the chemical reagent consumption, thus optimizing the entire process. In general, the future application of these models will have a positive impact on the biofuels industry, where there is a need for rapid decision-making regarding clone production and genetic breeding program.

Funder

Fundação de Amparo à Pesquisa do Estado de Minas Gerais

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3