Comprehensive Assessment of Biomass Properties for Energy Usage Using Near-Infrared Spectroscopy and Spectral Multi-Preprocessing Techniques

Author:

Shrestha Bijendra1ORCID,Posom Jetsada23ORCID,Sirisomboon Panmanas1ORCID,Shrestha Bim Prasad45

Affiliation:

1. Department of Agricultural Engineering, School of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand

2. Department of Agricultural Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand

3. Center for Alternative Energy Research and Development, Khon Kaen University, Khon Kaen 40002, Thailand

4. Department of Mechanical Engineering, Kathmandu University, Dhulikhel P.O. Box 6250, Nepal

5. Department of Bioengineering, University of Washington, Seattle, WA 98195, USA

Abstract

In this study, partial least squares regression (PLSR) models were developed using no preprocessing, traditional preprocessing, multi-preprocessing 5-range, multi-preprocessing 3-range, a genetic algorithm (GA), and a successive projection algorithm (SPA) to assess the higher heating value (HHV) and ultimate analysis of grounded biomass for energy usage by employing near-infrared (NIR) spectroscopy. A novel approach was utilized based on the assumption that using multiple pretreatment methods across different sections in the entire NIR wavenumber range would enhance the performance of the model. The performance of the model obtained from 200 biomass samples for HHV and 120 samples for ultimate analysis were compared, and the best model was selected based on the coefficient of determination of the validation set, root mean square error of prediction, and the ratio of prediction to deviation values. Based on the model performance results, the proposed HHV model from GA-PLSR and the N models from the multi-preprocessing PLSR 5-range could be used for most applications, including research, whereas the C and H models from GA-PLSR and the O model from the multi-preprocessing PLSR 5 range method 5-range air performance and are applicable only for rough screening. The overall findings highlight that the multi-preprocessing 5-range method, which was attempted as a novel approach in this study to develop the PLSR model, demonstrated better accuracy for HHV, C, N, and O, improving these models by 4.1839%, 8.1842%, 3.7587%, and 4.0085%, respectively. Therefore, this method can be considered a reliable and non-destructive alternative method for rapidly assessing biomass properties for energy usage and can also be used effectively in biomass trading. However, due to the smaller number of samples used in the model development, more samples are needed to update the model for robust application.

Funder

King Mongkut’s Institute of Technology Ladkrabang, Thailand

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3