Two-Step Partial Least Squares-Discriminant Analysis Modeling for Accurate Classification of Edible Sea Salt Products Using Laser-Induced Breakdown Spectroscopy

Author:

Park Jeong1ORCID,Kumar Sandeep2ORCID,Han Song-Hee3,Singh Vivek K.4,Nam Sang-Ho12,Lee Yonghoon12ORCID

Affiliation:

1. Department of Chemistry, Mokpo National University, Muan-gun, Korea

2. Spectrochemical Analysis Center for Organic and Inorganic Materials and Natural Products, Mokpo National University, Muan-gun, Korea

3. Division of Navigation Science, Mokpo National Maritime University, Mokpo, Korea

4. Department of Physics, University of Lucknow, Lucknow, India

Abstract

Laser-induced breakdown spectroscopy (LIBS) has been widely applied to material classification in various fields, and partial least squares-discriminant analysis (PLS-DA) is one of the frequently used classical multivariate statistics to construct classification models based on the LIBS spectra. However, classification accuracy of the PLS-DA model is sensitive to the number of classes and their similarities. Considering this characteristic of PLS-DA, we suggest a two-step PLS-DA modeling approach to improve the classification accuracy. This strategy was demonstrated for a six-class problem in which six commercial edible sea salts produced in Japan, South Korea, and France are classified using their LIBS spectra. At the first step, test spectra were sorted into four classes and one extended class, composed of the two other most confusing classes, and then the test spectra in the extended class were further classified into each of the two constituent classes which were modeled separately from the other four classes. This two-step classification has been found to remarkably improve the PLS-DA classification accuracy by maximizing the difference between the confusing classes in the second-step modeling.

Funder

National Research Foundation of Korea

Korea Basic Science Institute

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3