A Semi-Autonomous Method to Detect Cosmic Rays in Raman Hyperspectral Data Sets

Author:

Uckert Kyle1ORCID,Bhartia Rohit1,Michel John2

Affiliation:

1. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA

2. Los Alamos National Laboratory, Los Alamos, NM, USA

Abstract

Cosmic rays can degrade Raman hyperspectral images by introducing high-intensity noise to spectra, obfuscating the results of downstream analyses. We describe a novel method to detect cosmic rays in deep ultraviolet Raman hyperspectral data sets adapted from existing cosmic ray removal methods applied to astronomical images. This method identifies cosmic rays as outliers in the distribution of intensity values in each wavelength channel. In some cases, this algorithm fails to identify cosmic rays in data sets with high inter-spectral variance, uncorrected baseline drift, or few spectra. However, this method effectively identifies cosmic rays in spatially uncorrelated hyperspectral data sets more effectively than other cosmic ray rejection methods and can potentially be employed in commercial and robotic Raman systems to identify cosmic rays semi-autonomously.

Funder

Jet Propulsion Laboratory

National Aeronautics and Space Administration

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3