Surface-Enhanced Raman Spectroscopy (SERS) Activity of Gold Nanoparticles Prepared Using an Automated Loop Flow Reactor

Author:

Ma Haikuan1234ORCID,Zhang Shuwei234,Yuan Guang1,Liu Yan234,Cao Xuan234,Kong Xiangfeng234,Wang Yang234

Affiliation:

1. College of Information Science and Engineering, Ocean University of China, Qingdao, China

2. Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao, China

3. Shandong Provincial Key Laboratory of Marine Monitoring Instrument Equipment Technology, Qingdao, China

4. National Engineering and Technological Research Center of Marine Monitoring Equipment, Qingdao, China

Abstract

This study used automatic control methods to prepare gold nanoparticles (AuNPs) as the substrate and rhodamine 6G molecule as the probe to investigate the enhancement effect, stability, and consistency of surface-enhanced Raman spectroscopy (SERS). The gold nanosols were prepared via automatic control using loop flow-reactor technology, and the synthesis of nanoparticles with different sizes was precisely controlled by optimizing the ratio of the solution required for the reaction between sodium citrate and chloroauric acid during the preparation process. The morphology, structure, and optical properties of the prepared AuNPs were investigated using field-emission scanning electron microscopy, transmission electron microscopy, and ultraviolet visible spectroscopy. Using the proposed method, AuNPs with average particle sizes of 72, 85, 93, and 103 nm were synthesized in a precisely controlled manner. The 93 nm particles exhibited good SERS activity for rhodamine 6G under 785 nm excitation with a detection limit of 2.5 × 10−10 M. The relative standard deviation of the SERS spectra synthesized multiple times was <3.5%, indicating their good sensitivity and reproducibility. The results showed that the AuNPs prepared by the automatic control of the loop-flow method have high sensitivity, stability, and reproducibility. Moreover, they exhibited notable potential for in situ measurement and quantitative analysis using SERS.

Funder

Scientific and Technological Innovation projects for Laoshan Laboratory

Key Research and Development Plan of Shandong Province

The Joint Funds of the National Natural Science Foundation of China

Major Innovation Projects of the Pilot Project of Science, Education and Industry Integration

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3