Chemometrics for Raman Spectroscopy Harmonization

Author:

Barton Bastian1,Thomson James2,Lozano Diz Enrique2,Portela Raquel3ORCID

Affiliation:

1. Fraunhofer LBF, Darmstadt, Germany

2. ELODIZ Ltd, High Wycombe, UK

3. Institute of Catalysis and Petrochemistry, CSIC-ICP, Madrid, Spain

Abstract

Raman spectroscopy is used in a wide variety of fields, and in a plethora of different configurations. Raman spectra of simple analytes can often be analyzed using univariate approaches and interpreted in a straightforward manner. For more complex spetral data such as time series or line profiles (1D), Raman maps (2D), or even volumes (3D), multivariate data analysis (MVDA) becomes a requirement. Even though there are some existing standards for creation, implementation, and validation of methods and models employed in industry and academics, further research and development in the field must contribute to their improvement. This review will cover, in broad terms, existing techniques as well as new developments for MVDA for Raman spectroscopic data, and in particular the use associated with instrumentation and data calibration. Chemometric models are often generated via fusion of analytical data from different sources, which enhances model discrimination and prediction abilities as compared to models derived from a single data source. For Raman spectroscopy, raw or unprocessed data is rarely ever used. Instead, spectra are usually corrected and manipulated, 1 often by case-specific rather than universal methods. Calibration models can be used to characterize qualitatively and/or quantitatively samples measured with the same instrumentation that was used to create the model. However, regular validation is required to ensure that aging or incorrect maintenance of the instrument does not alter the model’s predictions, particularly when applied in regulated fields such as pharmaceuticals. Furthermore, a model transfer may be required for different reasons, such as replacement or significant repair of the instrumentation. Modeling can also be used to consistently harmonize Raman spectroscopic data across several instrumental designs, accounting for variations in the resulting spectrum induced by different components. Data for Raman harmonization models should be processed in a protocolled manner, and the original data accessible to allow for model reconstruction or transfer when new data is added. Important processing steps will be the calibration of the spectral axes and instrument dependent effects, such as spectral resolution. In addition, data fusion and model transfer are essential for allowing new instrumentation to build on existing models to harmonize their own data. Ideally, an open access database would be created and maintained, for the purpose of allowing for continued harmonization of new Raman instruments using an outlined and accepted protocol.

Funder

European Commission

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3