Assessment of unmixing approaches for the quantitation of SERS nanoparticles in highly multiplexed spectral images

Author:

Czaja Alexander12ORCID,Awad Samer12,Eremina Olga E.12ORCID,Fernando Augusta12,Zavaleta Cristina12

Affiliation:

1. Department of Biomedical Engineering University of Southern California Los Angeles California USA

2. Michelson Center for Convergent Bioscience University of Southern California Los Angeles California USA

Abstract

AbstractSurface‐enhanced Raman scattering nanoparticles (SERS NPs) offer powerful optical contrast features for imaging assays. Their gold core enhances the inelastic scattering cross section, allowing highly sensitive and rapid detection, and their characteristic sets of narrow spectral bands give them unsurpassed multiplexing capabilities. Multiplexed hyperspectral images are commonly unmixed using a compensation matrix of reference spectra to produce quantitative image channels illustrating the distribution of each material. It is these unmixed channels that are fit for interpretation from assays utilizing SERS NP contrast agents. Some factors that may impact SERS NP quantitative and dynamic range capabilities may include endogenous background heterogeneity, the ability of unmixing algorithms to account for signal variances, and linear system conditioning imposed by contrast agent signals. We report on hyperspectral Raman imaging of mixtures of SERS NPs from an expanded library of contrast agents. We study increasing plexity and varying degrees of system conditioning as inputs to a diverse set of classical, non‐negatively constrained, and regularized regression algorithms to investigate which signal features and unmixing methods deliver the most promising quantitation performance with the least error. Raman imaging of SERS NP mixtures is performed on controlled substrates and representative biological specimens, and experimental results are compared against ground truth data. We evaluate spectral fitting fidelity, quantitation, and specificity correlations with system conditioning. Spectral unmixing with a regularized hybrid of least squares regression with principal component analysis (HLP) algorithm approximated spectra with 3.5× better fitting fidelity and 3× better quantitation robustness with tissue background compared with simpler unmixing routines.

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3