Affiliation:
1. Department of Food Science, University of Copenhagen, Denmark
Abstract
Fluorescence spectroscopy is a sensitive and selective technique, which can be of great value in bioprocesses to provide online, real-time measures of chemical compounds. Although fluorescence spectroscopy is a widely studied method, not much attention has been given to issues concerning intensity variations in the fluorescence landscapes due to pH fluctuations. This study elucidates how pH fluctuations cause intensity changes in fluorescence measurements and thereby decreases the quality of the subsequent quantification. A photo-degradation process of riboflavin was investigated using fluorescence spectroscopy and used as a model system. A two-step modeling approach, combining weighted PARAllel FACtor analysis (PARAFAC) with weighted nonlinear regression of the known reaction kinetics, is suggested as a way of handling the fluorescence intensity shifts caused by the pH changes. The suggested strategy makes it possible to compensate for uncertainties in the shifted data and thereby obtain more reliable concentration profiles for the chemical compounds and kinetic parameters of the reaction.
Subject
Spectroscopy,Instrumentation
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献