Emission Characteristics of Laser-Induced Plasma Using Collinear Long and Short Dual-Pulse Laser-Induced Breakdown Spectroscopy (LIBS)

Author:

Wang Zhenzhen12,Deguchi Yoshihiro2,Liu Renwei23,Ikutomo Akihiro2,Zhang Zhenzhen3,Chong Daotong1,Yan Junjie1,Liu Jiping3,Shiou Fang-Jung4

Affiliation:

1. State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, China

2. Graduate School of Advanced Technology and Science, Tokushima University, Tokushima, Japan

3. Moe Key Laboratory of Thermo-Fluid Science and Engineering, Xi’an Jiaotong University, Xi’an, China

4. Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan

Abstract

Collinear long and short dual-pulse laser-induced breakdown spectroscopy (DP-LIBS) was employed to clarify the emission characteristics from laser-induced plasma. The plasma was sustained and became stable by the long pulse-width laser with the pulse width of 60 μs under free running (FR) conditions as an external energy source. Comparing the measurement results of stainless steel in air using single-pulse LIBS (SP-LIBS) and DP-LIBS, the emission intensity was markedly enhanced using DP-LIBS. The temperature of plasma induced by DP-LIBS was maintained at a higher temperature under different gate delay time and short pulse-width laser power conditions compared with those measured using short SP-LIBS. Moreover, the variation rates of plasma temperatures measured using DP-LIBS were also lower. The superior detection ability was verified by the measurement of aluminum sample in water. The spectra were clearly detected using DP-LIBS, whereas it cannot be identified using SP-LIBS of short and long pulse widths. The effects of gate delay time and short pulse-width laser power were also discussed. These results demonstrate the feasibility and enhanced detection ability of the proposed collinear long and short DP-LIBS method.

Funder

the National Key Basic Research Development Plan

the joint research fund between Tokushima University and National Taiwan University of Science and Technology

Postdoctoral Science Foundation of China

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3