Collinear double-pulse laser-induced breakdown spectroscopy based Cd profiling in the soil

Author:

Ren Jie,Yang Zihan,Zhao Yanru12,Yu Keqiang12

Affiliation:

1. Key Laboratory of Agricultural Internet of Things

2. Shaanxi Key Laboratory of Agricultural Information Perception and Intelligent Service

Abstract

Cadmium (Cd) can migrate in the soil and is readily absorbed by crops. High Cd accumulated in grains poses a huge threat to human health by inhibiting the function of the kidney system. Thus, it is crucial to reveal the content of soil Cd in vertical-depth series using a fast, real-time, and reliable method. For this purpose, laser-induced breakdown spectroscopy (LIBS) combined with multivariate chemometrics was developed to analyze Cd content in the soil with vertical-depth series. Soil samples spiked with different levels of Cd were prepared, and LIBS spectra were obtained by single-pulse LIBS (SP-LIBS) and collinear double-pulse LIBS (CDP-LIBS) with wavelengths of 532 nm and 1064 nm. With appropriate parameters, CDP-LIBS showed better performance in detecting Cd than SP-LIBS. Partial least squares regression (PLSR), genetic algorithm (GA)-optimized back propagation artificial neural network (BP-ANN), and particle swarm optimization (PSO)-optimized least squares-support vector machine (LS-SVM) were tested for quantitative analysis of the spectra after median absolute deviation (MAD), multiple scattering correction (MSC), wavelet transform (WT), spectral averaging, and normalization. PSO-optimized LS-SVM yielded an ideal result, with a coefficient of determination (R2, 0.999) and root mean square error (RMSE, 0.359 mg/Kg) in the prediction dataset. Finally, CDP-LIBS coupled with PSO-optimized LS-SVM was employed to analyze soil Cd content in vertical-depth series to reveal the migration pattern of Cd. Our results indicated that soil Cd had a significant positive relationship with the inverse of soil depth. However, Cd was mainly concentrated in 0-20 cm and rarely leached below 45 cm in the soil. This study suggests that LIBS and its enhancement techniques provide a reliable method for revealing the content of soil Cd in vertical-depth series.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shaanxi Province

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3