Exploration of Global and Specialized Near-Infrared Calibrations for the Quantification of Nutritional Content in Grapevine Organs, Berry Phenological Stages, and Shoot Lignification

Author:

van Wyngaard Elizma1,Blancquaert Erna1,Nieuwoudt Hélène1,Aleixandre-Tudo Jose Luis12ORCID

Affiliation:

1. South African Grape and Wine Research Institute (SAGWRI), Department of Viticulture and Oenology, Stellenbosch University, Stellenbosch, South Africa

2. Instituto de Ingeniería de Alimentos-Food UPV, Departamento de Tecnología de Alimentos, Universidad Politécnica de Valencia, Spain

Abstract

Current infrared spectroscopy applications in the field of viticulture are moving toward direct in-field measuring techniques. However, limited research is available on quantitative applications using direct measurement of fresh tissue. The few studies conducted have combined the spectral data from various cultivars, growing regions, grapevine organs, and phenological stages during model development. The spectral data from these heterogeneous samples are combined into a single data set and analyzed jointly during quantitative analysis. Combining the spectral information of these diverse samples into a global data set could be an unsuitable approach and could yield less accurate prediction results. Spectral differences among samples could be overlooked during model development and quantitative analysis. The development of specialized calibrations should be considered and could lead to more accurate quantitative analyses. This study explored a model optimization strategy attempting global and specialized calibrations. Global calibrations, containing data from multiple organs, berry phenological, and shoot lignification stages, were compared to specialized calibrations per organ or stage. The global calibration for organs contained data from shoots, leaves, and berries and produced moderately accurate prediction results for nitrogen, carbon, and hydrogen. The specialized calibrations per organ yielded more accurate calibrations with a coefficient of determination in validation (R2val) at 90.65% and a root mean square error of prediction (RMSEP) at 0.32% dry matter (DM) for the berries’ carbon calibrations. The leaves and shoots carbon calibrations had R2val and RMSEP at 84.99%, 0.34% DM, and 90.06%, 0.37% DM, respectively. The specialized calibrations for nitrogen and hydrogen showed similar improvements in prediction accuracy per organ. Specialized calibrations per phenological and lignification stage were also explored. Not all stages showed improvement, however, most stages had comparable or improved results for the specialized calibrations compared to the global calibrations containing all phenological or lignification stages. The results indicated that both global and specialized calibrations should be considered during model development to optimize prediction accuracy.

Funder

Ministerio de Universidades

Ernest Oppenheimer Memorial Trust

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3