Affiliation:
1. St Vincent’s Hospital, Sydney, Australia
2. Tan Tock Seng Hospital, Singapore
Abstract
Background Results of numerical pathology tests may be subject to interference and many laboratories identify such interferences and withhold results or issue warnings if clinically erroneous results may be issued. Some laboratories choose to correct for the effect of interferences, with the uncertainty of the correction noted as a limitation in this process. We investigate the effect of correcting for the effect of interferences on the ability to release results within defined error goals using the effect of in-vitro haemolysis on serum potassium measurement as an example. Methods A model was developed to determine the uncertainty of a result corrected for the effect of an interferent with a linear relationship between concentration and effect. The model was used to assess the effect of correction on the results which could be released within specified accuracy criteria. Results Using the effects of haemolysis on potassium results as an example, the maximum amount of haemolysis in a sample that would change the result by > 0.5 mmol/L, with a frequency of 5%, was increased from approximately 1100 mg/L (no correction) to 8000 mg/L (with correction). Conclusions With modelling of the factors related to the uncertainties of results in the presence of interferences, it is possible to release results in the presence of significantly higher concentrations of interferences after correction than without correction. Correction of a result for a known bias and allowance for the uncertainty of the correction can be considered consistent with the guide to the expression of uncertainty in measurement (GUM).
Subject
Clinical Biochemistry,General Medicine
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献