A novel practical approach to calculate measurement uncertainty in clinical pathology laboratories using quality control data with the use of biological variation where applicable

Author:

Mina Ashraf,Banukumar Shanmugam,Vazquez Santiago

Abstract

Background: Measurement Uncertainty (MU) can assist the interpretation and comparison of the laboratory results against international diagnostic protocols, facilitate a reduction in health care costs and also help protect laboratories against legal challenges. Determination of MU for quantitative testing in clinical pathology laboratories is also a requirement for ISO 15189. Methods: A practical and simple to use statistical model has been designed to make use of data readily available in a clinical laboratory to assess and establish MU for quantitative assays based on internal quality control data to calculate Random Error and external quality assurance scheme results to calculate Systematic Error. The model explained in this article has also been compared and verified against quality specifications based on Biological Variation. Results: Examples that explain and detail MU calculations for the proposed model are given where different components of MU are calculated with tabulated results. Conclusions: The designed model is cost-effective because it utilises readily available data in a clinical pathology laboratory. Data obtained from internal quality control programs and external quality assurance schemes are used to calculate the MU using a practical and convenient approach that will not require resources beyond what is available. Such information can additionally be useful not only in establishing limits for MU to satisfy ISO 15189 but also in selecting and/or improving methods and instruments in use. MU can as well play an important role in reducing health care costs as shown by examples in the article.

Publisher

MedCrave Group, LLC

Subject

General Medicine

Reference25 articles.

1. Williams SLREMRA. Quantifying Uncertainty in Analytical Measurement. 2nd Edition ed: EURACHEM/CITAC; 2000.

2. ISO/IEC. ISO/IEC Guide 99:2007 International vocabulary of metrology - Basic and general concepts and associated terms. 2007.

3. ISO/IEC. ISO/IEC Guide 98-3:2008 Uncertainty of measurement - Part 3: Guide to the expression of uncertainty in measurement (GUM:1995. 2008.

4. Meyer VR. Measurement uncertainty. J Chromatogr A. 2007;1158(1-2):15-24.

5. Ceriotti F. Deriving proper measurement uncertainty from Internal Quality Control data: An impossible mission? Clin Biochem 2018;57:37-40.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3