Validation of electronic medical data: Identifying diabetes prevalence in general practice

Author:

Henderson Joan1,Barnett Stephen2,Ghosh Abhijeet3,Pollack Allan J1,Hodgkins Adam2,Win Khin Than2,Miller Graeme C1,Bonney Andrew2ORCID

Affiliation:

1. The University of Sydney, Australia

2. University of Wollongong, Australia

3. Coordinare Ltd, Australia

Abstract

Background: Electronic medical records are increasingly used for research with limited external validation of their data. Objective: This study investigates the validity of electronic medical data (EMD) for estimating diabetes prevalence in general practitioner (GP) patients by comparing EMD with national Bettering the Evaluation and Care of Health (BEACH) data. Method: A “decision tree” was created using inclusion/exclusion of pre-agreed variables to determine the probability of diabetes in absence of diagnostic label, including diagnoses (coded/free-text diabetes, polycystic ovarian syndrome, impaired glucose tolerance, impaired fasting glucose), diabetic annual cycle of care (DACC), glycated haemoglobin (HbA1c) > 6.5%, and prescription (metformin, other diabetes medications). Via SQL query, cases were identified in EMD of five Illawarra and Southern Practice Network practices (30,007 active patients; from 2 years to January 2015). Patient-based Supplementary Analysis of Nominated Data (SAND) sub-studies from BEACH investigating diabetes prevalence (1172 GPs; 35,162 patients; November 2012 to February 2015) were comparison data. SAND results were adjusted for number of GP encounters per year, per patient, and then age–sex standardised to match age–sex distribution of EMD patients. Cluster-adjusted 95% confidence intervals (CIs) were calculated for both datasets. Results: EMD diabetes prevalence (T1 and/or T2) was 6.5% (95% CI: 4.1–8.9). Following age–sex standardisation, SAND prevalence, not significantly different, was 6.7% (95% CI: 6.3–7.1). Extracting only coded diagnosis missed 13.0% of probable cases, subsequently identified through the presence of metformin/other diabetes medications (*without other indicator variables) (6.1%), free-text diabetes label (3.8%), HbA1c result* (1.6%), DACC* (1.3%), and diabetes medications* (0.2%). Discussion: While complex, proxy variables can improve usefulness of EMD for research. Without their consideration, EMD results should be interpreted with caution. Conclusion: Enforceable, transparent data linkages in EMRs would resolve many problems with identification of diagnoses. Ongoing data quality improvement remains essential.

Funder

Funders are listed in the ‘Acknowledgements’

Publisher

SAGE Publications

Subject

Health Policy,Leadership and Management

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3