A systematic view on data descriptors for the visual analysis of tabular data

Author:

Schulz Hans-Jörg1,Nocke Thomas2,Heitzler Magnus3,Schumann Heidrun1

Affiliation:

1. Department of Computer Science, University of Rostock, Rostock, Germany

2. Potsdam Institute for Climate Impact Research, Potsdam, Germany

3. ETH Zurich, Zurich, Switzerland

Abstract

Visualization has become an important ingredient of data analysis, supporting users in exploring data and confirming hypotheses. At the beginning of a visual data analysis process, data characteristics are often assessed in an initial data profiling step. These include, for example, statistical properties of the data and information on the data’s well-formedness, which can be used during the subsequent analysis to adequately parametrize views and to highlight or exclude data items. We term this information data descriptors, which can span such diverse aspects as the data’s provenance, its storage schema, or its uncertainties. Gathered descriptors encapsulate basic knowledge about the data and can thus be used as objective starting points for the visual analysis process. In this article, we bring together these different aspects in a systematic form that describes the data itself (e.g. its content and context) and its relation to the larger data gathering and visual analysis process (e.g. its provenance and its utility). Once established in general, we further detail the concept of data descriptors specifically for tabular data as the most common form of structured data today. Finally, we utilize these data descriptors for tabular data to capture domain-specific data characteristics in the field of climate impact research. This procedure from the general concept via the concrete data type to the specific application domain effectively provides a blueprint for instantiating data descriptors for other data types and domains in the future.

Funder

Bundesministerium für Bildung und Forschung

Publisher

SAGE Publications

Subject

Computer Vision and Pattern Recognition

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. DataPilot: Utilizing Quality and Usage Information for Subset Selection during Visual Data Preparation;Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems;2023-04-19

2. Conclusion;Human–Computer Interaction Series;2023

3. Visualization Onboarding Grounded in Educational Theories;Visualization Psychology;2023

4. A Data-Driven Platform for the Coordination of Independent Visual Analytics Tools;Computers & Graphics;2022-08

5. Visual analysis for panel data imputation with Bayesian network;The Journal of Supercomputing;2021-06-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3