Author:
Aigner Wolfgang,Miksch Silvia,Schumann Heidrun,Tominski Christian
Abstract
AbstractThis chapter briefly summarizes the content of the book and describes practical concerns of visualizing time-oriented data in real-world data settings. Visual analytics is briefly outlined as a modern approach that combines visualization, interaction, and computational analysis more tightly to facilitate data analysis activities better. Finally, research opportunities for future work are discussed.
Reference64 articles.
1. Andrienko, N., G. Andrienko, G. Fuchs, A. Slingsby, C. Turkay, and S. Wrobel. 2020. Visual Analytics for Data Scientists. Springer. https://doi.org/10.1007/978-3-030-56146-8.
2. Beck, F., M. Burch, S. Diehl, and D. Weikopf. 2017. A taxonomy and survey of dynamic graph visualization. Computer Graphics Forum 36 (1): 133–159. https://doi.org/10.1111/cgf.12791.
3. Börner, K., A. Bueckle, and M. Ginda. 2019. Data visualization literacy: Definitions, conceptual frameworks, exercises, and assessments. Proceedings of the National Academy of Sciences 116 (6): 1857–1864. https://doi.org/10.1073/pnas.1807180116.
4. Börner, K., A. Maltese, R.N. Balliet, and J. Heimlich. 2016. Investigating aspects of data visualization literacy using 20 information visualizations and 273 science museum visitors. Information Visualization 15 (3): 198–213. https://doi.org/10.1177/1473871615594652.
5. Bors, C. 2020. Facilitating Data Quality Assessment Utilizing Visual Analytics: Tackling Time, Metrics, Uncertainty, and Provenance. Ph.D. thesis. Institute of Visual Computing and Human-Centered Technology, TU Wien.