Affiliation:
1. ETH Zurich, Zurich, Switzerland
2. Michigan State University, East Lansing, MI, USA
Abstract
The paper describes a method for the immersive, dynamic visualization of undirected, weighted graphs. Using the Fruchterman-Reingold method, force-directed graphs are drawn in a Virtual-Reality system. The user can walk through the data, as well as move vertices using controllers, while the network display rearranges in realtime according to Newtonian physics. In addition to the physics behind the employed method, the paper explains the most pertinent computational mechanisms for its implementation, using Unity, SteamVR, and a Virtual-Reality system such as HTC Vive (the source package is made available for download). It was found that the method allows for intuitive exploration of graphs with on the order of [Formula: see text] vertices, and that dynamic extrusion of vertices and realtime readjustment of the network structure allows for developing an intuitive understanding of the relationship of a vertex to the remainder of the network. Based on this observation, possible future developments are suggested.
Subject
Computer Vision and Pattern Recognition
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献