Visualizing the invisible: User-centered design of a system for the visualization of flows and concentrations of particles in the air

Author:

Christmann Olivier1ORCID,Fleury Sylvain1,Migaud Jérôme2,Raimbault Vincent2,Poussard Benjamin3,Guitter Thibaut3,Gorisse Geoffrey1,Richir Simon1

Affiliation:

1. Arts et Métiers Institute of Technology, LAMPA, HESAM University, Changé, France

2. Mann+Hummel, Laval, France

3. AMVALOR, France

Abstract

This study presents two experiments addressing the representation of scientific data, in particular airflows, with a user-centered design approach. Our objective is to provide users feedback to data visualization designers to help them choose an air flow representation that is understandable and attractive for non-experts. The first study focuses on static markers allowing to visualize an airflow, with information characterizing the direction and the intensity. In a second study, carried out in an immersive virtual environment, two information were added, the temporal evolution and the concentration of pollutants in the air. To measure comprehension and attractiveness, participants were asked to answer items on Likert scales (experiment 1) and to answer User Experience Questionnaire (experiment 2). The results revealed that arrows seem to be a very common and understandable form to represent orientation and direction of flow, but that they should be improved to be more attractive by making them brighter and more transparent, as the representation could occlude the scene, especially in virtual reality. To solve this problem, we suggest giving the users the ability to define the specific area where they want to see the air flow, using a cross-sectional view. Vector fields and streamlines could therefore be applied in a virtual reality context.

Publisher

SAGE Publications

Subject

Computer Vision and Pattern Recognition

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3