Affiliation:
1. School of Food & Biological Engineering, Jiangsu University, Zhenjiang, China
2. National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
Abstract
In the present research work, near infrared (NIR) spectroscopy coupled with chemometric algorithms such as partial least-squares (PLS) regression and some effective variable selection algorithms (synergy interval-PLS (Si-PLS), Backward interval-PLS (Bi-PLS), and genetic algorithm-PLS (GA-PLS)) were used for the quantification of antioxidant properties of peanut seed samples including, amongst others, total phenolic content, total flavanoid content and total antioxidant capacity. The developed models were assessed using coefficients of determination for the calibration (R2) and prediction (r2); root mean standard error of cross-validation, RMSECV; root mean square error of prediction, RMSEP and residual predictive deviation, RPD. The efficiency of the developed model was significantly enhanced with the use of Si-PLS, Bi-PLS, and GA-PLS as compared to the classical PLS model. The R2 for calibration and r2 for prediction varied from 0.76 to 0.95 and 0.72 to 0.94, respectively. The obtained results revealed that NIR spectroscopy, coupled with different chemometric algorithms, has the potential to be used for rapid assessment of the antioxidant properties of peanut seed.
Funder
natural science foundation of Jiangsu Province
National Natural Science Foundation of China
National Key Research and Development Program of China
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献