Development of a near infrared calibration model with temperature compensation using common temperature-difference spectra for determining the Brix value of intact fruits

Author:

Jannok Piyamart12,Kamitani Yoshinori1,Hironaka Kazunori3,Shibayama Michio1,Kawano Sumio14

Affiliation:

1. Faculty of Agriculture, Kagoshima University, Kagoshima, Japan

2. Department of Post-harvest and Processing Engineering, Rajamangala University of Technology Isan, Nakhon Ratchasima, Thailand

3. Postharvest Technology Laboratory, University of the Ryukyus, Okinawa, Japan

4. Kawano Consulting, Kagoshima, Japan

Abstract

In order to create a calibration model with temperature compensation, the calibration method using the partial least squares regression based on the combined spectra measured at some different temperatures is promising. However, the method is time-consuming since it requires spectra acquisition at different temperatures. In addition, the sample quality may change during the period for the different temperature adjustment of samples. The spectra of the target fruit species of peaches, pears, and persimmons were measured at 25℃ using the interactance method. Spectra for 20℃ and 30℃ were created artificially using temperature-difference second derivative spectra from the 25℃-second derivative spectra. Then, the possibility of temperature-difference second derivative spectra of fruit(s) to create the correct 20℃ and 30℃ artificial second derivative spectra was evaluated. The temperature-difference second derivative spectra created from each target fruit species could be useful for each target fruit species while the common temperature-difference second derivative spectra created from the three target fruit species were useful for not only each target fruit species but also the other fruit species of apples. The calibration model for apples developed using the common temperature-difference second derivative spectra showed low standard error of performance and bias of 0.45°Brix and 0.09°Brix, respectively. The model could be applied well to the prediction sets of apples at 20℃, 25℃, and 30℃ with non-significant biases.

Publisher

SAGE Publications

Subject

Spectroscopy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3