Determination of the viability of retinispora (Hinoki cypress) seeds using shortwave infrared hyperspectral imaging spectroscopy

Author:

Mukasa Perez1,Wakholi Collins1,Mohammad Akbar Faqeerzada1,Park Eunsoo1,Lee Jayoung1,Suh Hyun Kwon2,Mo Changyeun3,Lee Hoonsoo4,Baek Insuck5,Kim Moon S5,Cho Byoung-Kwan1ORCID

Affiliation:

1. Department of Biosystems Machinery Engineering, College of Agricultural and Life Science, Chungnam National University, Daejeon, Republic of Korea

2. Anet Inc, Seoul, Republic of Korea

3. Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Republic of Korea

4. Department of Biosystems Engineering, College of Agriculture, Life & Environment Science, Chungbuk National University, Chungbuk, Republic of Korea

5. Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD, USA

Abstract

The combination of hyperspectral imaging with multivariate data analysis methods has recently been applied to develop a nondestructive technique, required to determine the seed viability of artificially aged vegetable and cereal seeds. In this study, the potential of shortwave infrared hyperspectral imaging to determine the viability of naturally aged seeds was investigated and thereafter a model for online seed sorting system was developed. The hyperspectral images of 400 Hinoki cypress tree seeds were acquired, and germination tests were conducted for viability confirmation, which indicated 31.5% of the viable seeds. Partial least square discriminant analysis models with 179 variables in the wavelength region of 1000–1800 nm were developed with a maximum model accuracy of 98.4% and 93.8% in both the calibration and validation sets, respectively. The partial least square discriminant analysis beta coefficient revealed the key wavelengths to differentiate viable from nonviable seeds, determined based on the differences in the chemical compositions of the seeds, including their lipid and fatty acid contents, which may control the germination ability of the seeds. The most effective wavelengths were selected using two model-based variable selection methods (i.e., the variable importance of projection (15 variables) and the successive projections algorithm (8 variables)) to develop the model. The successive projections algorithm wavelength selection method was considered to develop a viability model, and its application to the raw data resulted in a prediction accuracy of 94.7% in the calibration set and 92.2% in the validation set. These results demonstrate the potential of shortwave infrared hyperspectral imaging spectroscopy as a powerful nondestructive method to determine the viability of Hinoki cypress seeds. This method could be applied to develop an online seed sorting system for seed companies and nurseries.

Funder

Ministry of Agriculture, Food and Rural Affairs

Publisher

SAGE Publications

Subject

Spectroscopy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3