Near infrared spectroscopy calibration strategies to predict multiple nutritional parameters of pasture species from different functional groups

Author:

Catunda Karen LM1ORCID,Churchill Amber C12,Power Sally A1,Moore Ben D1

Affiliation:

1. Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia

2. Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, MN, USA

Abstract

Near infrared reflectance (NIR) spectroscopy has been used by the agricultural industry as a rapid and inexpensive technique to quantify nutritional chemistry in plants. The aim of this study was to evaluate the performance of NIR calibrations in predicting the nutritional composition of ten pasture species that underpin livestock industries in many countries. The species comprised a range of functional diversity (C3 legumes; C3/C4 grasses; annuals/perennials) and origins (tropical/temperate; introduced/native) that grew under varied environmental conditions (control and experimentally induced warming and drought) over a period of more than two years ( n = 2622). A maximal calibration set including 391 samples was used to develop and evaluate calibrations for all ten pasture species (global calibrations), as well as for subsets comprised of the plant functional groups. This study found that the global calibrations were appropriate to predict the six key nutritional quality parameters for the studied pasture species, with the highest estimation quality found for ash (ASH), crude protein (CP), amylase-treated neutral detergent fibre (aNDF) and acid detergent fibre (ADF), and the lowest for ether extract (EE) and acid detergent lignin (ADL) parameters. The plant functional group calibrations for C3 grasses performed better than the global calibrations for ASH, CP, ADF and EE parameters, whereas for C3 legumes and C4 grasses the functional group calibrations performed less well than the global calibrations for all nutritional parameters of these groups. Additionally, the calibrations were able to capture the range of variation in forage nutritional quality caused by future climate scenarios of warming and severe drought.

Funder

Meat & Livestock Australia Donor Company

Western Sydney University

Dairy Australia

Publisher

SAGE Publications

Subject

Spectroscopy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3