Multivariate analysis of three chemometric algorithms on rapid prediction of some important quality parameters of crude shea butter using Fourier transform-near infrared spectroscopy

Author:

Seweh Emmanuel Amomba12,Xiaobo Zou1,Tao Feng1,Jiachen Shi1,Tahir Haroon Elrasheid1,Arslan Muhammad1

Affiliation:

1. School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China

2. Department of Agricultural Engineering, Bolgatanga Polytechnic, Bolgatanga, Ghana

Abstract

A comparative study of three chemometric algorithms combined with NIR spectroscopy with the aim of determining the best performing algorithm for quantitative prediction of iodine value, saponification value, free fatty acids content, and peroxide values of unrefined shea butter. Multivariate calibrations were developed for each parameter using supervised partial least squares, interval partial least squares, and genetic-algorithm partial least square regression methods to establish a linear relationship between standard reference and the Fourier transformed-near infrared predicted. Results showed that genetic-algorithm partial least square models were superior in predicting iodine value and saponification value while partial least squares was excellent in predicting free fatty acids content and peroxide values. The nine-factor genetic-algorithm partial least square iodine value calibration model for predicting iodine value yielded excellent ( R2 cal = 0.97), ( R2 val = 0.97), low (root mean square error of cross-validation = 0.26), low (root mean square error of Prediction = 0.23), and (ratio of performance to deviation = 6.41); for saponification value, the nine-factor genetic-algorithm partial least square saponification value calibration model had excellent R2 cal (0.97), R2 val (0.99); low root mean square error of cross-validation (0.73), low root mean square error of Prediction (0.53), and (ratio of performance to deviation = 8.27); while for free fatty acids, the 11-factor partial least square free fatty acids produced very high R2 cal (0.97) and R2 val (0.97) with very low root mean square error of cross-validation (0.03), low root mean square error of Prediction (0.04) and (ratio of performance to deviation = 5.30) and finally for peroxide values, the 11-factor partial least square peroxide values calibration model obtained excellent R2 cal (0.96) and R2val (0.98) with low root mean square error of cross-validation (0.05), low root mean square error of Prediction (0.04), and (ratio of performance to deviation = 5.86). The built models were accurate and robust and can be reliably applied in developing a handheld quality detection device for screening, quality control checks, and prediction of shea butter quality on-site.

Funder

National Natural Science Foundation of China and China Postdoctoral Science Foundation

Publisher

SAGE Publications

Subject

Spectroscopy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3