Hyperspectral imaging for classification of bulk grain samples with deep convolutional neural networks

Author:

Dreier Erik Schou123ORCID,Sorensen Klavs Martin1,Lund-Hansen Toke3,Jespersen Birthe Møller1,Pedersen Kim Steenstrup24ORCID

Affiliation:

1. Chemometrics and Analytical Technology, Department of Food Science, University of Copenhagen, Frederiksberg, Denmark

2. The Image Section, Department of Computer Science, University of Copenhagen, Copenhagen, Denmark

3. Foss Analytical, Hillerød, Denmark

4. Digital Collections, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark

Abstract

Near Infrared hyperspectral imaging (HSI) offers a fast and non-destructive method for seed quality assessment through combining spectroscopy and imaging. Recently, convolutional neural networks (CNN) have shown to be promising tools for red-green-blue (RGB) image or spectral cereal classification. This paper describes the design and implementation of deep CNN models capable of utilizing both the spatial and spectral dimension of HSI data simultaneously for analysis of bulk grain samples with densely packed kernels. Classification of eight grain samples, including six different wheat varieties, were used as a test case. The study shows that the CNN architecture ResNet, originally designed for RGB images, can be adapted to use the full spatio-spectral dimension of the HSI data through adding a linear down sample layer prior to the conventional ResNet architecture. Using traditional spectral pre-processing methods before passing the data to the CNN does not improve the classification accuracy of the networks, while a channel-wise image standardization improves the accuracy significantly. The modified ResNet applied to the full spatio-spectral dimension has a classification accuracy of up to 99.75 ± 0.02%, outperforming both purely spectral (86.5 ± 0.1%) and purely spatial (98.70 ± 0.01%) based methods in terms of accuracy, indicating that utilizing spatio-spectral correlation can improve sample classification, but also that grain classification is primarily solved using spatial information. The findings reported in this paper demonstrate how CNN networks can be designed to leverage spatio-spectral information in hyperspectral data. The combination of HSI and spatio-spectral CNN networks shows a possible method for fast prediction of bulk grain quality parameters where both spectral and spatial properties of the grains are important.

Publisher

SAGE Publications

Subject

Spectroscopy

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3