Progress in the Application of CNN-Based Image Classification and Recognition in Whole Crop Growth Cycles

Author:

Yu Feng12,Zhang Qian2,Xiao Jun1ORCID,Ma Yuntao2,Wang Ming2,Luan Rupeng2,Liu Xin2,Ping Yang2,Nie Ying2,Tao Zhenyu2,Zhang Hui2

Affiliation:

1. School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China

2. Institute of Data Science and Agricultural Economics, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China

Abstract

The categorization and identification of agricultural imagery constitute the fundamental requisites of contemporary farming practices. Among the various methods employed for image classification and recognition, the convolutional neural network (CNN) stands out as the most extensively utilized and swiftly advancing machine learning technique. Its immense potential for advancing precision agriculture cannot be understated. By comprehensively reviewing the progress made in CNN applications throughout the entire crop growth cycle, this study aims to provide an updated account of these endeavors spanning the years 2020 to 2023. During the seed stage, classification networks are employed to effectively categorize and screen seeds. In the vegetative stage, image classification and recognition play a prominent role, with a diverse range of CNN models being applied, each with its own specific focus. In the reproductive stage, CNN’s application primarily centers around target detection for mechanized harvesting purposes. As for the post-harvest stage, CNN assumes a pivotal role in the screening and grading of harvested products. Ultimately, through a comprehensive analysis of the prevailing research landscape, this study presents the characteristics and trends of current investigations, while outlining the future developmental trajectory of CNN in crop identification and classification.

Funder

Beijing Innovation Consortium of Agriculture Research System

Youth Fund of Beijing Academy of Agriculture and Forestry Sciences

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3