Near infrared spectrometric investigation of lactate in a varying pH buffer

Author:

Baishya Nystha1ORCID,Momouei Mohammad1,Budidha Karthik1,Qassem Meha1,Vadgama Pankaj2,Kyriacou Panicos A1

Affiliation:

1. City, University of London, London, UK

2. School of Engineering and Materials Science, Queen Mary University of London, London, UK

Abstract

Lactic acidosis is commonly observed in various disease states in critical care and can be adopted as a hemodynamic biomarker, as well as a target for therapy. pH is the main biomarker for the diagnosis of acid–base disorders and is currently measured utilizing invasive blood sampling techniques. Therefore, there is a need for a non-invasive and continuous technology for the measurement of pH and lactate levels. In this work, near infrared spectroscopy is explored as a technique for investigating lactic acidosis. In-vitro studies on 20 isotonic phosphate buffer solutions of varying pH with constant lactate concentration (2 mmol/L) were performed. The whole near infrared spectrum (800–2600 nm) was then divided into four parts for analysis: (a) water absorption peaks, (b) 1000–1250 nm, (c) 1700–1760 nm, and (d) 2200–2400 nm. The water absorption peaks showed a linear variation with the changes in pH in the spectra. The range from 1700–1760 nm showed good correlation with calculated values for lactate ionization, with the changes in pH. However, the region from 2200–2400 nm showed a reverse correlation with respect to the concentration changes of lactate and a distinction could be made from pH 6–7 and 7–8. This study successfully identifies wavelengths (1233 nm, 1710 nm, 1750 nm, 2205 nm, 2319 nm, and 2341 nm) which can be directly correlated to lactic acidosis. Knowledge from this study will contribute toward the development of lactate-based pH monitoring optical sensor for critical care.

Funder

Engineering and Physical Sciences Research Council

Publisher

SAGE Publications

Subject

Spectroscopy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3