The Impact of Acetic Acid on Measuring Ethanol Concentrations in Water and Human Serum Using Short-Wave Infrared Spectroscopy

Author:

Paprocki Szymon1,Qassem Meha1,Kyriacou Panicos A.1ORCID

Affiliation:

1. Research Centre for Biomedical Engineering, School of Science and Technology, University of London, Northampton Square, London EC1V 0HB, UK

Abstract

Ethanol intoxication, although an elemental part of life in many places around the world, still presents several issues associated with excessive consumption. These issues range from drunk driving, violence, and antisocial behavior to self-harm, all exerting an increased cost on the society. Monitoring of intoxication levels can help to limit the impact of these issues by preventing the use of automobiles or heavy machinery and personal monitoring. Previous works on noninvasive measurement of ethanol tissue concentration for estimation of blood alcohol concentration (BAC) performed worst during the first hour of intoxication. Gas chromatography research of intoxication shows that levels of acetic acid rise together at a similar rate as those of ethanol after initial imbibement. In this research, short-wave infrared (SWIR) spectroscopy was utilized with the aim of establishing the interaction between ethanol and acetic acid in water and serum mixtures. The most consistent and clear correlation between ethanol and acetic acid was recorded at 2262 and 2302 nm wavelengths. Partial least-squares (PLS) analysis indicates that the most effective region for consideration in measurement of ethanol is the therapeutic window four (IV) due to high variance in vibration of carbon bonds. The behavior of spectra at different concentration ranges was examined and described in detail in relation to the consequence of alcohol measurement. The investigation concluded that ethanol shows distinctive regions of absorbance at wavelengths of 2262 and 2302 nm, with variations arising from increasing concentrations of acetic acid, whilst also showing that therapeutic window four is amongst the most influential regions of the spectrum for SWIR.

Funder

Rockley Photonics Inc.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference33 articles.

1. World Health Organization (WHO) (2022, May 09). World Health Organization: Alcohol. Available online: https://www.who.int/news-room/fact-sheets/detail/alcohol.

2. How Breathing Technique Can Influence the Results of Breath-Alcohol Analysis;Jones;Med. Sci. Law,1982

3. The impact of breathing pattern and lung size on the alcohol breath test;Hlastala;Ann. Biomed. Eng.,2007

4. A Disposable paper breathalyzer with an alcohol sensing organic electrochemical transistor;Bihar;Sci. Rep.,2016

5. Breath Alcohol Analysis and the Blood: Breath Ratio;Wright;Med. Sci. Law,1975

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3