Feasibility of Operating a Heavy-Duty Battery Electric Truck Fleet for Drayage Applications

Author:

Tanvir Shams1,Un-Noor Fuad2,Boriboonsomsin Kanok1,Gao Zhiming3

Affiliation:

1. Center for Environmental Technology and Research, University of California, Riverside, CA

2. Department of Electrical and Computer Engineering, University of California, Riverside, CA

3. National Transportation Research Center, Oak Ridge National Laboratory, Knoxville, TN

Abstract

Vehicle fleet electrification is regarded as one major pathway toward achieving energy independence and reducing air pollution and greenhouse gas emissions. Compared to light-duty and medium-duty vehicles, electrification of heavy-duty vehicles, especially Class 8 trucks, is more challenging owing to the battery size required to attain the driving range necessary for their operating goals. As drayage trucks generally have a limited daily mileage, return to a home base every night, and spend a large amount of time creeping and idling, drayage operation has been the first targeted application for Class 8 electric trucks. The feasibility of operating battery electric drayage trucks at the individual vehicle level has recently been demonstrated. However, questions remain as to whether these trucks are capable of meeting the needs of typical drayage operation at the fleet level. This paper presents a feasibility analysis of operating an electric truck fleet based on real-world operation data of a diesel drayage operator in Southern California. Second-by-second activity data collected from 20 trucks in the fleet were used to estimate the corresponding electric energy consumption and the state of charge of the battery using a microscopic electric energy consumption model. An algorithm for generating tours of drayage activity from the collected data was developed and implemented. Multiple scenarios with different battery charging and truck scheduling assumptions were analyzed. The results show that 85% of the tours could be served by electric trucks if there is opportunity for charging at the home base during the time gap between consecutive tours.

Funder

u.s. department of transportation

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3