Affiliation:
1. Oak Ridge National Laboratory, Oak Ridge, TN
2. Energetics Incorporated, Columbia, MD
Abstract
This paper presents a wide-ranging analysis of Class 3-8 commercial vehicle electrification by means of developing a framework tool which uses a quantitative method of estimating electric vehicle energy consumption and appropriate charging considerations. The Fleet DNA composite statistics on real-world driving behavior is used to evaluate feasible or market-ready battery electric vehicle (BEV) technologies in medium- and heavy-duty (MD/HD) applications. In the paper, ten representative Class 3-8 commercial vehicle electrifications have been evaluated as a function of various service coverages, including applications in port drayage tractors, refuse trucks, delivery trucks, buses, and bucket trucks. The results indicate significant energy savings and fuel cost savings across all MD/HD vehicle electrifications. The majority of MD BEVs, with the exception of Class 3 bucket trucks, achieve better than a 5-year payback with 50–75% service coverage. For HD BEVs, with the exception of the Class 8 port drayage tractors, the 90% service coverage results in a 10-year or longer payback time, while the 50% service coverage yields a 7–8 year payback. Class 8 port drayage tractors should achieve payback in no more than a 3.5 years with 50–75% service coverage. Thus, the analysis indicates a highly feasible potential for Class 3-6 MD vehicles to be electrified, and feasible opportunities for electrification in Class 7-8 HD short-distance applications.
Subject
Mechanical Engineering,Civil and Structural Engineering
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献