Machine Learning Approach to Short-Term Traffic Congestion Prediction in a Connected Environment

Author:

Elfar Amr1,Talebpour Alireza2,Mahmassani Hani S.1

Affiliation:

1. Civil and Environmental Engineering, Northwestern University Transportation Center, Evanston, IL

2. Zachry Department of Civil Engineering, Texas A&M University, College Station, TX

Abstract

Traffic congestion is a complex phenomenon triggered by a combination of multiple interacting factors. One of the main factors is the disturbances caused by individual vehicles, which cannot be identified in aggregate traffic data. Advances in vehicle wireless communications present new opportunities to measure traffic perturbations at the individual vehicle level. The key question is whether it is possible to find the relationship between these perturbations and shockwave formation and utilize this knowledge to improve the identification and prediction of congestion formation. Accordingly, this paper explores the use of three machine learning techniques, logistic regression, random forests, and neural networks, for short-term traffic congestion prediction using vehicle trajectories available through connected vehicles technology. Vehicle trajectories provided by the Next Generation SIMulation (NGSIM) program were utilized in this study. Two types of predictive models were developed in this study: (1) offline models which are calibrated based on historical data and are updated (re-trained) whenever significant changes occur in the system, such as changes/updates to the infrastructure, and (2) online models which are calibrated using historical data and updated regularly using real-time information on prevailing traffic conditions obtained through V2V/V2I communications. Results show that the accuracy of the models built in this study to predict the congested traffic state can reach 97%. The models presented can be used in various potential applications including improving road safety by warning drivers of upcoming traffic slowdowns and improving mobility through integration with traffic control systems.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3