Differences in the Ageing Behavior of Asphalt Pavements with Porous and Stone Mastic Asphalt Mixtures

Author:

Jing Ruxin1ORCID,Varveri Aikaterini1ORCID,Liu Xueyan1,Scarpas Athanasios12ORCID,Erkens Sandra1

Affiliation:

1. Pavement Engineering, Delft University of Technology, Delft, The Netherlands

2. Civil Infrastructure and Environmental Engineering Department, Khalifa University, Abu Dhabi, United Arab Emirates

Abstract

The degradation of bituminous materials as a result of ageing has a significant effect on asphalt pavement performance. In this study, one porous asphalt (PA) section and one stone mastic asphalt (SMA) asphalt pavement section were designed and constructed in 2014 and exposed to the actual environmental condition. To study the change in the pavement’s mechanical properties, asphalt cores were collected from both test sections annually. The change in stiffness modulus was determined via cyclic indirect tensile tests. To investigate the ageing behavior across the pavement depth, the bitumen was extracted and recovered from 13 mm slices along the depths of the cores. The chemical composition and rheological properties of the field-recovered bitumen, and that of original bitumen aged in standard short- and long-term ageing protocols, were investigated by means of the Fourier Transform Infrared (FTIR) spectrometer and Dynamic Shear Rheometer. The results show that the effect of mineral aggregate packing, and therefore of air-void distribution and connectivity, on the ageing sensitivity of the pavements with time was significant, as the changes in the stiffness of the PA mixture were greater than that of SMA mixture. In addition, the results of field-recovered bitumen show that there is an ageing gradient inside the porous asphalt layer, however, the ageing of SMA mainly happens on the surface of the layer. Finally, the field-recovered and laboratory-aged bitumen results demonstrate a weak relation between field and standard laboratory ageing protocols.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3