Innovative Rheological Modifiers for Decreasing the Cracking Susceptibility of Asphalt Mixtures

Author:

Garita-Jimenez Josue1ORCID,Tran Nam H.1ORCID,Keuliyan Faustina2ORCID,Moraes Raquel1ORCID,Rodezno Carolina1ORCID,Yin Fan1ORCID

Affiliation:

1. National Center for Asphalt Technology, Auburn University, Auburn, AL

2. Heritage Research Group, Indianapolis, IN

Abstract

Incorporating additives into asphalt binders or mixtures to mitigate the adverse effects of aging can improve the resistance to fatigue cracking and, thus, prolong asphalt pavement service life. This study aimed to assess five candidate anti-aging technologies through a comprehensive laboratory testing matrix that can reduce the aging susceptibility and enhance the cracking resistance of asphalt mixtures. Two base binders were modified with the additives. The resultant asphalt mixtures were tested at three aging conditions, including short-term and long-term oven aging and the National Center for Asphalt Technology (NCAT) Accelerated Weathering System. The study assessed the impact of additive technology on cracking performance through dynamic modulus and cyclic fatigue testing. The results were utilized to calculate the Sapp and Glover–Rowe mix ( G-Rm) indexes to gauge the cracking resistances and aging susceptibilities of the asphalt mixtures. A 20-year pavement structural analysis was conducted using FlexPAVE™ 1.1 software to determine the evolution of each mixture’s percent cracking damage. The results consistently indicated that additives 3, 4, and 5 increased the cracking resistance of asphalt mixtures for both base binders. FlexPAVE™ 1.1 pavement analysis also showed that all tested additives reduced the percent damage over 20 years, except for additive 4 with one of the base binders. Implementing and developing promising additives to counteract aging effects is vital for creating more sustainable and durable asphalt pavements.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3